How to run performance and scale validation for OpenShift ...

2 of 22

How to run performance and scale
validation for OpenShift Al

April 30, 2025 Alberto Perdomo, Kevin Pouget
Related topics: Artificial intelligence
Related products: Red Hat Al, Red Hat OpenShift Al

Share: 8 ¥ In =&

[@ Table of contents: v

Imagine having the ability to customize a large language model (LLM) to
talk like your company, know about your business, and help you fix your
specific business challenges with precision. This is not something from the
future. It's the current reality of fine-tuning LLMs at scale, a capability that
is transforming how organizations use Al to get ahead of their
competitors.

In this series, we'll share our latest findings on fine-tuning LLMs with Red
Hat OpenShift Al. These insights will be valuable whether you're
customizing models for specific use cases or scaling Al operations across
multiple cloud environments. In this article, we will introduce our model
fine-tuning stack and discuss how we run performance and scale
validation of the fine-tuning process.

Using OpenShift Al to build applications

Red Hat OpenShift Al provides enterprises a comprehensive platform for
building and deploying impactful Al applications. It is a central
management system for coordinating everything from data ingestion to
model serving across hybrid cloud environments, allowing organizations to
focus on creating value rather than managing infrastructure.

Our team, Performance and Scalability for Al Platforms (PSAP), continues

https://developers.redhat.com/articles/2025/04/30/how-run-p...

10/20/25, 1:40 PM

https://developers.redhat.com/author/alberto-perdomo
https://developers.redhat.com/author/alberto-perdomo
https://developers.redhat.com/author/alberto-perdomo
https://developers.redhat.com/author/alberto-perdomo
https://developers.redhat.com/author/kevin-pouget
https://developers.redhat.com/author/kevin-pouget
https://developers.redhat.com/topics/ai-ml
https://developers.redhat.com/topics/ai-ml
https://developers.redhat.com/taxonomy/term/37288
https://developers.redhat.com/taxonomy/term/37288
https://developers.redhat.com/taxonomy/term/37288
https://developers.redhat.com/taxonomy/term/37288
https://developers.redhat.com/products/red-hat-openshift-ai/overview
https://developers.redhat.com/products/red-hat-openshift-ai/overview
https://developers.redhat.com/#twitter
https://developers.redhat.com/#twitter
https://developers.redhat.com/#twitter
https://developers.redhat.com/#facebook
https://developers.redhat.com/#facebook
https://developers.redhat.com/#facebook
https://developers.redhat.com/#linkedin
https://developers.redhat.com/#linkedin
https://developers.redhat.com/#linkedin
https://developers.redhat.com/#email
https://developers.redhat.com/#email
https://developers.redhat.com/#email
https://developers.redhat.com/#twitter
https://developers.redhat.com/#facebook
https://developers.redhat.com/#linkedin
https://developers.redhat.com/#email
https://developers.redhat.com/products/red-hat-openshift-ai/overview
https://developers.redhat.com/products/red-hat-openshift-ai/overview
https://developers.redhat.com/products/red-hat-openshift-ai/overview
https://developers.redhat.com/products/red-hat-openshift-ai/overview

How to run performance and scale validation for OpenShift ...

3 0f 22

to advance LLM fine-tuning capabilities among other innovations. We're
developing solutions that enable enterprises to leverage Al effectively
while maintaining robust security and compliance standards essential for
business operations.

Al infrastructure setup has traditionally presented significant challenges.
Many ML engineers have encountered difficulties with dependencies and
resource orchestration. OpenShift Al addresses these pain points directly,
enabling users to fine-tune models and deploy applications with greater
efficiency.

This approach transforms Al development into a reliable, enterprise-grade
workflow that operates seamlessly across hybrid cloud environments. It
eliminates the need to choose between innovation and stability or
between speed and security.

Model fine-tuning stack

Imagine a musician carefully adjusting their instrument until it produces
the perfect note, or an F1engineer tweaking the engine for the best
performance.

In the Al domain, we adapt powerful, pre-trained models for specialized
tasks. It's comparable to providing a talented generalist with expertise in
your specific business domain.

The challenge lies in the resources required to train these large models
from scratch. The computational and financial demands are substantial,
making this approach not feasible for most organizations. Fine-tuning has,
therefore, become the preferred method in modern Al development. This
impact has been so great that we now refer to initial model training as
"pre-training,” with fine-tuning representing the important final stage.

OpenShift Al streamlines this process, supporting both custom images
and public repository integration. We've incorporated fms-hf-tuning, a
robust toolkit developed by our colleagues at IBM Research, which
leverages HuggingFace SFTTrainer and PyTorch FSDP. This versatile
solution can be utilized as a Python package or implemented in our

https://developers.redhat.com/articles/2025/04/30/how-run-p...

10/20/25, 1:40 PM

How to run performance and scale validation for OpenShift ...

4 of 22

experiments as a container image with enhanced scripting capabilities.

Technical note: Our experiments use different fms-hf-tuning images
based on the OpenShift Al version (more on that later).

We're going to take a deep dive into exploring three different flavors of

fine-tuning on OpenShift Al:

1. Full parameter fine-tuning: The conventional method that adjusts
all parameters within the network.

2. LoRA (low rank adapters): An efficient approach that achieves fine-
tuning with significantly reduced resource requirements.

3. QLoRA (quantized low rank adapters): One of the latest
advancements in resource-efficient fine-tuning techniques.

Each methodology offers specific advantages and limitations. We'll
examine when and why you might select one approach over another
based on your particular use case.

Full parameter fine-tuning

Think of full parameter fine-tuning as providing your LLM with a
comprehensive update rather than a minor adjustment. Unlike the more
efficient approaches, LoRA and QLoRA (which we'll discuss later), this
method adjusts every parameter in your neural network (see Figure 1).

What makes this different from building a model from scratch? In this
approach, model weights aren't randomly initialized. Instead, these
weights already encode valuable features. With full parameter fine-tuning,
you're working with a model that already has a solid foundation. You're
simply adapting it to your specific requirements.

What makes full parameter fine-tuning distinctive?

¢ Precision through complete control: By adjusting every parameter,
you're effectively teaching the model to understand your domain
thoroughly. Your task-specific dataset becomes the model's

comprehensive training program.

https://developers.redhat.com/articles/2025/04/30/how-run-p...

10/20/25, 1:40 PM

How to run performance and scale validation for OpenShift ...

5o0f 22

¢ Resource-intensive but valuable: This process requires significant
computational resources and time. However, for applications where
accuracy is essential, this investment often provides the best
returns.

¢ Enhanced task-specific performance: Upon completion, your
model demonstrates exceptional capability in its specialized task. It
effectively transforms a general-purpose Al into one with expertise
in your specific domain.

Full Parameter Fine-Tuning

Pre-trained Model Fine-Tuned Model

Training Process

v

v

v

Domain Specific Data

/[N
Pre-trained Model { Fine-Tuned Model:

+ General knowledge. | - Domain specific knowledge.

- Initial weights from general training « All weights updated during training

Figure 1: Full parameter fine-tuning diagram.

Low-rank adaptation, LORA

Low-rank adaptation (LoRA) is an efficient approach within the parameter
efficient fine-tuning (PEFT) family of algorithms. While full parameter
fine-tuning modifies the entire model, LoRA adopts a more targeted

strategy (see Figure 2).

https://developers.redhat.com/articles/2025/04/30/how-run-p...

|

10/20/25, 1:40 PM

https://developers.redhat.com/sites/default/files/full_0.png
https://developers.redhat.com/sites/default/files/full_0.png
https://developers.redhat.com/sites/default/files/full_0.png

How to run performance and scale validation for OpenShift ...

6 of 22

The innovative aspect of LoRA is that it preserves the original model
parameters and introduces two compact matrices (e.g., adapters) that
work together to create the necessary adjustments. The original model
remains unchanged while still providing fine-tuning benefits, offering
efficiency without sacrificing effectiveness.

LoRA's effectiveness centers on two key parameters:

¢ rank dimension (r): This represents the complexity of your
adjustments. A smaller r-value requires less memory but may offer
less precise control.

e alpha (scaling factor): This determines the intensity of your
adjustments on the final output.

Advantages of the LoRA algorithm:

¢ More efficiency: By focusing on a subset of parameters, LoRA
completes training significantly faster than full parameter methods.

¢ Resource optimization: LoRA's streamlined approach reduces GPU
memory requirements, enabling fine-tuning of models that would
otherwise be too large to process.

o Versatility: LoRA allows you to develop different versions of your
model for various tasks by simply exchanging adapters, providing
flexibility and efficiency.

e Strategic focus: LoRA typically concentrates its modifications in
the attention layers, where much of the model's critical processing
occurs. This targeted approach maximizes impact while minimizing
resource usage.

LoRA Fine-Tuning

Pre-trained Model LoRA Fine-Tuned Model

[@ Input Layer j
Low-Rank Low-Rank

e Attention uyer 1 Projection Projection
L ERadey Matrix A Matrix By

[@ Hidden Layer 1 j

LoRA Adapter,

Low-Rank Low-Rank
Projection Projection
Matrix A Matrix By

LoRA Adapter,

https://developers.redhat.com/articles/2025/04/30/how-run-p...

10/20/25, 1:40 PM

https://developers.redhat.com/sites/default/files/lora.png

How to run performance and scale validation for OpenShift ...

7 of 22

Low-Rank Low-Rank
+ Projection Projection
Matrix Ax Matrix B,

Low-Rank Low-Rank
Projection Projection
Matrix A; Matrix B;

e
© e) e

Frozen Weights

e Attention Layer 2

LoRA module

Domain Specific Data

LoRA Fine-Tuned Model: LoRA offers:
- Domain specific knowledge. + Much fewer trainable parameters.
- Original weights remain the same - Lower memory and compute requirements.
- LORA adapters for each target module + Multiple LORA adapters that can be swapped.

Pre-trained Model:
- General knowledge.
- Initial weights from general training

Figure 2: LoRA fine-tuning diagram.

Quantized low-rank adaptation, QLoRA

Quantized low-rank adaptation (QLoRA) is a highly efficient approach to
fine-tuning. The key innovation is quantization, storing model weights in
4-bit precision rather than standard full precision (see Figure 3).

However, while the model weights are compressed, QLoRA performs its
learning operations in full precision. During each training update, the
model temporarily returns to full precision, makes necessary adjustments,
and then compresses again, effectively balancing efficiency with accuracy.

Key advantages of QLoRA, similar to LoRA:

¢ Memory efficiency: Substantially reduces GPU memory
requirements by keeping the parameters in their quantized form
most of the time.

¢ Accessibility: Enables fine-tuning of substantial models on
consumer-grade GPUs, making advanced Al development more

accessible.

e Strategic precision: Maintains full precision for critical low-rank
matrices where accuracy is most important.

Processing time is the primary trade-off. The quantization and
dequantization processes add additional steps to the training. However,
for many applications, this is a reasonable compromise for the ability to
work with models that would otherwise require specialized hardware.

QLoRA Fine-Tuning

Pre-trained Model QLORA Fine-Tuned Model

https://developers.redhat.com/articles/2025/04/30/how-run-p...

10/20/25, 1:40 PM

https://developers.redhat.com/sites/default/files/lora.png
https://developers.redhat.com/sites/default/files/lora.png
https://developers.redhat.com/sites/default/files/lora.png
https://developers.redhat.com/sites/default/files/qlora.png

How to run performance and scale validation for OpenShift ...

8 of 22

cEE
(e |
Qi | 2
. -
(Oemgzem |

[@ Output Layer (4-bit]

Frozen Weights

LoRA Adapter,

Low-Rank Low-Rank
Projection Projection
_Matrix Ay Matrix B,

Low-Rank Low-Rank
" Projection ~ Projection
Matrix A, Matrix B,

LoRA Adapter,

Low-Rank Low-Rank
Projection Projection
Matrix Ay Matrix B;

Low-Rank Low-Rank
~—— Projection ~—— Projection
Matrix A, Matrix B,

On-the-fly dequantization during the forward pass

Domain Specific Data

QLORA Fine-Tuned Model:
+ Domain specific knowledge.
- Original weights remain the same
- LoRA adapters for each target module

QLoRA offers:
* Much lower GPU memory requirements.
« Full precision LoRA adapters.

Pre-trained Model:
+ General knowledge.
- Initial weights from general training

Figure 3: QLoRA fine-tuning diagram.

These tests ran on a Red Hat OpenShift cluster with 4xH100-80GB
NVIDIA GPUs. To run these tests in an automated, transparent, and
reproducible manner, we use test orchestrator for performance and
scalability of Al platforms (TOPSAIL), which uses a combination of Python
code for orchestration and Red Hat Ansible Automation Platform roles for
cluster control.

Training results

Diving deeper into our journey, we employed the fms-hf-tuning image to
conduct our fine-tuning experiments. We put three distinct approaches
through their paces: full fine-tuning, LoRA, and QLoRA. Let's pull back the
curtain on our test settings and unpack what we discovered.

Technical note: We focused specifically on benchmarking the fine-tuning
infrastructure rather than evaluating the model’s accuracy through LLM
testing. The main objective was to assess the performance of OpenShift
Al fine-tuning stack and compare it against internal benchmarks. Think of
it as testing the kitchen rather than rating the meal.

For this exploration, we examined results across three OpenShift Al
versions:

e OpenShift Al 2.16 paired with fms-hf-tuning v2.2.1

https://developers.redhat.com/articles/2025/04/30/how-run-p...

10/20/25, 1:40 PM

https://developers.redhat.com/sites/default/files/qlora.png
https://developers.redhat.com/sites/default/files/qlora.png
https://developers.redhat.com/sites/default/files/qlora.png
https://developers.redhat.com/products/red-hat-openshift/overview
https://developers.redhat.com/products/red-hat-openshift/overview
https://developers.redhat.com/products/red-hat-openshift/overview
https://github.com/openshift-psap/topsail/tree/main
https://github.com/openshift-psap/topsail/tree/main
https://github.com/openshift-psap/topsail/tree/main
https://developers.redhat.com/products/ansible/overview
https://developers.redhat.com/products/ansible/overview
https://developers.redhat.com/products/ansible/overview

How to run performance and scale validation for OpenShift ...

9 of 22

e OpenShift Al 2.17 paired with fms-hf-tuning v2.5.0
¢ OpenShift Al 2.18 paired with fms-hf-tuning v2.6.0

For the following experiments, we adhered to the default fms-hf-tuning
parameters to train a diverse set of models, varying in architecture and
size. It's important to note that the performance metrics presented here
do not represent optimal performance and could be significantly
enhanced by tuning the appropriate fms-hf-tuning parameters.

In upcoming articles, we'll dive into the technical implications of these
findings. But for now, we're keeping our spotlight on the automation
framework. While we gathered a different kind of metrics during our fine-
tuning tests, we chose three that we considered the most informative in
terms of performance:

¢ Train runtime: How long the process takes.
e Train throughput: How efficiently it processes data.
¢ Maximum GPU memory usage across all GPUs: How resource-

hungry the process becomes.

Let's dive into what these numbers tell us.

The first testing setup

When your Al needs a complete wardrobe change, not just a new tie. In the
first test scenario, the selected method is full parameter fine-tuning,
which is the traditional approach where all model parameters are updated
during training. While this method typically achieves the best inference
results, it requires significant computational resources since the entire
neural network is modified.

This test consists of running full parameter fine-tuning for a given set of
models in an OpenShift cluster. The test settings are as follows:

e Dataset: Cleaned Alpaca Dataset

¢ Replication factor of the dataset (where 1.0 represents the full
dataset): 0.2

https://developers.redhat.com/articles/2025/04/30/how-run-p...

10/20/25, 1:40 PM

https://github.com/gururise/AlpacaDataCleaned
https://github.com/gururise/AlpacaDataCleaned
https://github.com/gururise/AlpacaDataCleaned

How to run performance and scale validation for OpenShift ...

10 of 22

e Number of accelerators: 4xH100-80GB NVIDIA GPU
e Maximum sequence length: 512

e Epochs: 1
The list of fine-tuned models:

e ibm-granite/granite-3b-code-instruct
e ibm-granite/granite-8b-code-base

e instructlab/granite-7b-lab

e meta-llama/Llama-2-13b-hf

e meta-llama/Meta-Llama-3.1-70B

e meta-llama/Meta-Llama-3.1-8B

¢ mistralai/Mistral-7B-v0.3

e mistralai/Mixtral-8x7B-Instruct-vO.l

Our earlier full parameter fine-tuning tests revealed intriguing regressions
(which we'll dissect in future articles). But for now, let's focus on our
comparative analysis across the three OpenShift Al versions. As
mentioned, each version comes paired with its own fms-hf-tuning image,
and Topsail proved to be our secret weapon, allowing us to automate fine-
tuning evaluations while flexibly adjusting GPU counts and
hyperparameters to fit various scenarios.

The first thing that one can notice in these initial results is that not all of
the models manage to finish the training loop, as shown in Figure 4. The
reason behind this is that for full fine-tuning, all of the weights are loaded
into memory at full precision and actively participate in both forward and
backward passes, receiving gradient updates after each step, triggering
OOM errors for very large models (i.e., hitting the hard ceiling of your
GPU's VRAM capacity).

Fine-tuning runtime, in seconds.
Lower is better

Configuration

1000 ® rhoai=2.16
= rhoai=2.17
= rhoai=2.18

https://developers.redhat.com/articles/2025/04/30/how-run-p...

10/20/25, 1:40 PM

https://developers.redhat.com/sites/default/files/full_runtime.png

